Please Show Your Complete Solution:))), Pleaseeeee

Please Show your complete solution:)))
PLEASEEEEE

Answer:

1.

3 {t}^{2}  = 12

3 {t}^{2}  \div 3 = 12 \div 3

 {t}^{2}  = 4

t =  \binom{ + }{ - }  \sqrt{4}

t =  \binom{ + }{ - } 2

t =  - 2 \\ t = 2

checking:

3 {t}^{2}  = 12

t =  - 2

3( - 2)^{2}  = 12

3(4) = 12

12 = 12

t = 2

3(2)^{2}  = 12

3(4) = 12

12 = 12

2.

 {x}^{2}  - 7 = 0

 {x}^{2}  =  7

x =  \binom{ + }{ - }  \sqrt{7}

x =  -  \sqrt{7}  \\ x =  \sqrt{7}

Checking:

 {x}^{2}  - 7 = 0

x =  -  \sqrt{7}

( -  \sqrt{7} )^{2}  - 7 = 0

 \sqrt{7}^{2}  - 7 = 0

7 - 7 = 0

0 = 0

x =  \sqrt{7}

( \sqrt{7})^{2} - 7 = 0

 \sqrt{7}^{2}  - 7 = 0

7 - 7 = 0

0 = 0

3.

3 {r}^{2}  = 18

3 {r}^{2}  \div 3 = 18 \div 3

 {r}^{2}  = 6

r =  \binom{ + }{ - } \sqrt{6}

r =  -  \sqrt{6}  \\ r =  \sqrt{6}

checking:

3 {r}^{2}  = 18

r =  -  \sqrt{6}

3( -  \sqrt{6} )^{2}  = 18

3 \times  \sqrt{6}^{2}  = 18

3 \times 6 = 18

18 = 18

r =  \sqrt{6}

3( \sqrt{6} )^{2}  = 18

3 \times  \sqrt{6}^{2}  = 18

3 \times 6 = 18

18 = 18

4.

 {x}^{2}  = 150

x =  \binom{ + }{ - } 150

x =  \binom{ + }{ - }  \sqrt{ {5}^{2}  \times 6}

x =  \binom{ + }{ - }  \sqrt{ {5}^{2} }  \sqrt{6}

x =  \binom{ + }{ - } 5 \sqrt{6}

x =  - 5 \sqrt{6}  \\ x = 5 \sqrt{6}

checking:

 {x}^{2}  = 150

x =  - 5 \sqrt{6}

( - 5 \sqrt{6} )^{2}  = 150

(5 \sqrt{6} )^{2}  = 150

 {5}^{2}  \times  \sqrt{6}^{2}  = 150

25 \times 6 = 150

150 = 150

(5 \sqrt{6} )^{2}  = 150

 {5}^{2}  \times  \sqrt{6}^{2} = 120

25 \times 6 = 150

150 = 150

5.

 {x}^{2}  =  \frac{9}{16}

x =  \binom{ + }{ - }  \sqrt{ \frac{9}{16} }

x =  \binom{ + }{ - }  \frac{3}{4}

x =  -  \frac{3}{4}  \\ x =  \frac{3}{4}

checking:

 {x}^{2}  =  \frac{9}{16}

x =  -  \frac{3}{4}

( -  \frac{3}{4} )^{2}  =  \frac{9}{16}

( \frac{3}{4} )^{2}  = ( \frac{3}{4})^{2}

2 = 2

x =  \frac{3}{4}

( \frac{3}{4} )^{2}  =  \frac{9}{16}

( \frac{3}{4} )^{2} = ( \frac{3}{4}  )^{2}

2 = 2

6.

(s - 4)^{2}  - 81 = 0

 {s}^{2}  - 8s + 16 - 81 = 0

 {s}^{2}  + 5s - 13s - 65 = 0

s \times (s + 5) - 13(s + 5) = 0

(s + 5) \times ( s - 13) = 0

s + 5 = 0 \\ s - 13 = 0

s =  - 5 \\ s = 13

checking:

(s - 4)^{2}  - 81 = 0

s =  - 5

( - 5 - 4)^{2} - 81 = 0

( - 9)^{2}  - 81 = 0

81 - 81 = 0

0  = 0

s = 13

(13 - 4)^{2}  - 81 = 0

(9)^{2}  - 81 = 0

81 - 81 = 0

0 = 0


Comments

Popular posts from this blog

How Could Someone Predict The Approximate Location Of An Epicenter Without A Seismograph